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Abstract. GANs are pairs of neural networks that train by competing
against each other. They got a lot of attention in recent years—especially
in image generation. In this paper, I will first explain the general idea
of GANs. Later I will review approaches to solve their most common
issues like generating high-resolution images, the variation of generated
images, and assessing of results. I will focus on approaches introduced
by the Progressive Growing of GANs paper by Karras et al. [9].
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1 Introduction

Generative Adversarial Networks [4] are a great fit to generate images. They
have been used in a wide variety of image analysis tasks like generating images
from given text snippets or attribute descriptions [17,21], superresolution [11,20]
and image inpainting [15,23,7,22].

With the general formulation of Generative Adversarial Networks, there are
some problems that arise like generating images with a high-resolution, variation
of the generated images and assessing the results. After introducing the general
formulation of GANs I will review approaches that have been introduced to solve
these issues while focusing on Progressive Growing of GANs [9]. I will keep the
mathematical details to a minimum and focus on intuitive explanations.

2 Generative Adversarial Nets

Goodfellow et al. introduced a general framework for training generative mod-
els [4] that make use of a generator model G and a discriminator model D. The
goal of the generator model is to produce samples that are indistinguishable from
the samples of the training distribution. The goal of the discriminator model is
to distinguish samples produced by the generator model from samples from the
training distribution. This leads to a game between generator and discriminator
that can be easily explained by the following analogy by Goodfellow.

The generator model can be seen as a counterfeiter and the discriminator
as the police. The counterfeiter is trying to counterfeit money that can not be
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detected by the police. The police are trying to get better in detecting the fake
money. If the police get better in detecting fake money the counterfeiter has to
get better in faking it. If the counterfeiter gets better in faking money the police
have to get better in detecting it. This game eventually leads to a state where
the fake money by the counterfeiter is indistinguishable from real money.

2.1 Training Procedure

The training procedure consists of two parts that are repeated. During the first
part, only samples of the real data distribution and generated samples are pre-
sented to the discriminator and the discriminator is updated by ascending its
stochastic gradient. This is repeated k times. During the second part, the gener-
ator is updated by presenting samples of it to the generator and computing its
gradient.

3 Problems and Solutions

In this section, I describe problems that exist with training GANs like it was
introduced by Goodfellow and solutions that were proposed in the literature. I
will focus on solutions introduced by Karras et al. [9]. To most of the problems,
there is a wide variety of possible approaches that I won’t cover completely.

3.1 High-Resolution Images

An important problem when generating images using GANs is that GANs strug-
gle with high-resolution images [14].

This problem can be addressed by an architecture and training procedure
that progressively increases the resolution of the generator and the discrimina-
tor model. The generator model consists of multiple blocks that increase the
resolution. The fist bock takes the latent random vector as input and outputs
a feature map with a spacial resolution of 4 × 4. The next bock operates on an
upsampled version of this feature map with twice the spatial resolution. Blocks
like these are stacked on each other until the desired resolution is reached. The
discriminator model is basically a mirror image of the generator model and the
feature maps are downsampled between the blocks.

This kind of architecture was already introduced by Chen et al. in 2017 [14].
Karras et al. [9] introduced a new training procedure that utilizes that lower
resolution GANs are easier to train. The new training procedure reduces the
training time while improving the quality of the output image.

In the first part of the training the first block of the generator (which outputs
4× 4 feature maps) is connected to a 1× 1 convolutional layer (that transforms
the features into RGB values) and the last block of the discriminator gets its
input from a similar layer (that transforms RGB values into features). These
networks form a GAN on its own and are trained with respect to downsampled
images from the training distribution.
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In each following training part, the following block of the generator is slowly
faded into the network while the weights of the previously trained blocks are
copied but are still trainable. The block is faded in by adding its RGB output pi
to an upsampled version of the output of the previous block pi−1 weighted with
a parameter α (α ·pi +(1−α) ·pi−1) which is increased linearly. Analogously, the
previous block of the discriminator is added and slowly faded in and the whole
model is trained with respect to images from the training distribution downsam-
pled to the current resolution. This training procedure enables the training of
high-resolution GANs that will be demonstrated in Section 4.

3.2 Variation of Generated Images

Another problem of GANs is that they tend to generate images with lacking
variation.

A rather easy method to force the generator to generate a larger variety of
images is to give the discriminator information about the variety of the current
minibatch. Note that the minibatch can be generated by the generator or drawn
from the training discriminator. Because the discriminator can use this informa-
tion to make its prediction the generator is forced to generate minibatches that
have a similar variety to the minibatches of the training distribution.

Karras et al. [9] compute the standard deviation of each feature in each
spatial location over the minibatch and average the values to arrive at the average
standard deviation over the minibatch. This value is concatenated to the input
of the last block of the discriminator network as an additional constant feature
map which allows the discriminator to make use of the value.

This is a simplified version of “minibatch discrimination” [18] which computes
multiple feature statistics of the minibatch. It is neat because it introduces no
additional parameters (except a few more parameters that require no special
handling in the convolutional layer after the feature map is appended) and no
additional hyperparameters.

Other solutions have been proposed to increase the variation of the generated
examples. MAD-GAN [3] uses multiple generators and the discriminator must
also identify the generator which forces the generators to produce diverse images.
Unrolled GANs [13] unroll the discriminator which (they claim) also increases
the diversity.

3.3 Assessing Results

Comparing GANs to each other is hard to do and usually requires manual com-
parison which can be difficult and subjective. Therefore automated methods that
compute a metric on how well the generated examples fit the training distribu-
tion is desirable. This metric can then be compared between different GANs.

Karras et al. [9] introduce an evaluation metric that computes the sliced
Wasserstein distance [16] between image patches sampled from different levels
of a Laplacian pyramid (each level of the pyramid contains the structure of
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one specific frequency band). A small Wasserstein distance indicates that the
training patches and generated patches appear similar. This means that a small
Wasserstein distance for higher resolutions of the pyramid means that high-level
features like edges and noise are similar. A small Wasserstein distance for lower
resolutions of the pyramid indicate that the overall structures are similar.

Another metric is the Inception Score (IS) [18] which evaluates the generated
images based on how well a the pretrained Inception model [19] can predict a
class label and how much the classes vary. Good generated images have a low
entropy on their prediction (The model can predict on class very clearly) and
a high entropy on the marginal distribution (All classes get predicted equally
often). The Inception Score should only be used on models trained on ImageNet
and there are more issues pointed out by Barratt and Sharma [2].

The Fréchet Inception Distance (FID) [6] is an improved version of the IS
that uses the features computed by an intermediate layer of the Inception model
and a multivariate Gaussian distribution. Therefore, it is more robust against
cases where the model only predicts one image per class.

Despite all the metrics that have been introduced the evaluation of GANs is
still a big issue because none of the introduced metrics is a clear fit for all cases.

3.4 Other Problems and Improvements

In the early stages of the training, the generated images and the images from the
training distribution can be to easy to distinguish which can lead to gradients
for the generator that point in random directions. This can be improved by using
a more stable loss function than the Jensen-Shannon divergence (that was used
in the original formulation of GANs [4]) like least-squares [12] and Wasserstein
distance [1,5].

Another problem that appears if the competition between the generator and
the discriminator model is not fair (e.g. the discriminator is trained is much
better than the generator) are escalating signal magnitudes. This issue can be
counteracted with Batch Normalization [8] but Karras et al. introduced another
method where they just normalized each feature vector after each convolutional
layer to unit length [9].

4 Evaluation

In this section, I will show some results from the original GAN paper [4], Pro-
gressive Growing of GANs [9] and Style-Based GANs [10].

Figure 1 shows results by Goodfellow et al. [4]. We can see that only MNIST
images could be generated such that they look like real MNIST images. The
examples generated for the Toronto Faces Dataset are still recognizable as faces
but most of them have obvious artifacts. The images generated for the CIFAR-10
dataset are not really recognizable but are visually similar to images from the
dataset.
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(a) (b)

(c) (d)

Fig. 1. Results from Goodfellow et al. [4]. The rightmost column shows the closest
training example to the generated example beside it. The used datasets are (a) MNIST
(b) TFD (c) CIFAR-10 (fully connected model) (d) CIFAR-10 (convolutional discrim-
inator and deconvolutional generator)

Note that all generated images by the original GANs have a very low resolu-
tion. Judging from the results from the CIFAR-10 dataset the method wouldn’t
work for images with higher resolutions without addressing this issue in network
architecture and training procedure like described in Subsection 3.1.

Figure 2 shows results by Karras et al. [9] on the high-resolution CELEBA-
HQ dataset. The generated images have a resolution of 1024 × 1024 and we can
observe that the model is able to generate fine details like hair and beards in
fitting locations. Also the general structure of the images is realistic—one could
be fooled into thinking that the images are photographs.

To verify the quality of the generated images I downloaded the released
source code and model weights and generated random samples myself which
can be found in Figure 3. We can observe that the samples generated from the
CELEBA-HQ dataset (Figure 3a) look significantly worse than the carefully
picked samples presented in the paper but still include fine details and mostly
overall realistic structure. The model seems to have the biggest issues with out-
lines and background. This shows that the model can’t yet reliably generate
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Fig. 2. Results from Karras et al. [9] from the CELEBA-HQ dataset.

images that can fool humans and that the selection of images in the paper does
not represent a random selection. Images of lower quality can only be found in
the appendix of the paper. Additionally, I generated images from the using the
provided model weight for the cat category of the LSUN dataset which can be
found in Figure 3b. We can see that the overall structure of these images does
not look realistic. There are parts in the images that look like parts from cats
but the parts are not composed correctly. This could be due to a higher variety
of training examples with respect to there low-frequency structures. Therefore
the model might not learn a set of realistic structures during the first parts of
the training on low-resolution images.

Lastly, I show generated images by Karras et al. [10] using a style based
generator architecture in Figure 4. The generated images for the FFHQ dataset
look even more promising than the image generated by progressive GANs on
the CELEBA-HQ dataset and the cats also look better. Since there is no source
code and weights available for style based GANs I can not compare the images
with a random set.

5 Conclusion

I explained the general idea of GANs and presented some of the most important
fundamental issues. I presented the approaches to solving these issues introduced
in the Progressive Growing of GANs paper and gave a few impressions on other
approaches. I showed results from Goodfellow and Karras and evaluated them
critically with respect to the visually recognizable problems. Additionally, I gen-
erated own random examples using the source code and network parameters
from the Progressive Growing of GANs paper and realized that the images pre-
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(a)

(b)

Fig. 3. Generated images using the released source code and model from Karras et
al. [9] from (a) the CELEBA-HQ dataset (b) LSUN cat category.

sented in the main part of the paper give a false impression of the quality of the
model but that it is still very powerful.
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