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Overview

Objective:
•Classification of a diverse set of audio files:
Task 2 of the DCASE 2018 Challenge
•Achieving high accuracy without excessive
ensembling of different models

Approach:
•One-dimensional CNN trained on raw-audio
data
•Two-dimensional CNN trained on
mel-spectrograms
•Combining both CNNs by densely connected
layers within a single network
•Data augmentation
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Figure 1:Illustration of the task by [1].

Method and Network Architecture

cnn-spec and cnn-audio:
•Architecture is similar to common image classification CNNs (VGG19 [2], AlexNet [3])
•Batch Normalization after each block and dense layer
•ReLU after each convolutional and dense layer
• cnn-audio and cnn-spec are trained separately on raw-audio waves and log-scaled
mel-spectrograms, respectively

cnn-comb:
• cnn-audio and cnn-spec are joined by removing the softmax and dense layers,
concatenating the output features, and adding a densely connected neural network
•The transferred weights are kept fixed while training the new layers
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Figure 2:Illustrated architecture of the models.

Data Augmentation

•Time shifting (1)
Random shift in time dimension

•Random cropping (2)
Crop input to match input size of
CNNs

•Random padding (3)
Pad input with zeros to match input
size of CNNs

•Replication (4)
Replicate input several times

•Mixup (5)
Blend multiple audio clips of same
or different classes [4]
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Figure 3:Visualization of augmentation techniques for
mel-spectrograms.

Evaluation

Model Input length Public score Private score Total score

cnn-audio
1 sec 0.920 0.888 0.894
2 sec 0.921 0.884 0.891
3 sec 0.935 0.889 0.898

cnn-spec
1 sec 0.930 0.923 0.924
2 sec 0.950 0.928 0.932
3 sec 0.935 0.930 0.931

cnn-comb
1 sec 0.955 0.939 0.942
2 sec 0.966 0.944 0.948
3 sec 0.956 0.944 0.946

Table 1:Evaluation results (MAP@3) of the individual models on the public (301 samples), private (1299
samples), and full test set of the DCASE 2018 Challenge on Kaggle.
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Figure 4:Comparison of per-category scores of single-input models, combined models with one input alter-
nately set to zero, and the combined model with both inputs. The mAP@3 score is reported on a single fold
for each model.

• cnn-audio MAP@3
> cnn-spec : cnn-combspec_input=0

MAP@3
> cnn-combaudio_input=0

• cnn-spec MAP@3
> cnn-audio : cnn-combaudio_input=0

MAP@3
> cnn-combspec_input=0

• cnn-comb with both inputs performs best

=⇒ cnn-comb uses high-level features of both models
=⇒ cnn-comb focuses on the features of the superior model

Conclusion

Extending current Convolutional Neural Network approaches that only make use of a fre-
quency representation by adding a second input that incorporates the raw audio wave,
has improved the mAP@3 score significantly. We have demonstrated the capabilities of
our model by competing in the Freesound General-Purpose Audio Tagging Challenge on
Kaggle and ranking in the top two percent of all participants.
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