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Microscopy

“Microscopy […] has served as a fundamental scientific technique for centuries.
[…]. It remains an invaluable tool in biology and healthcare and has been inte-
grated increasingly into modern chemical instrumentation. [emphasis added]”1

1Bell and Morris, An Introduction to Microscopy.
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Microscope Images

(a) Light microscope
Image by Masur [CC BY-SA 3.0
(https://creativecommons.org/
licenses/by-sa/3.0/)]

(b) Electron microscope
Image by Akademie věd České republiky / Czech
Academy of Science [CC BY-SA 3.0 cz
(https://creativecommons.org/
licenses/by-sa/3.0/cz/deed.en)]

(c) Scanning-probe microscope
Image by Sraisac [CC BY-SA 4.0
(https://creativecommons.org/
licenses/by-sa/4.0)] (cropped)
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Microscope Images

(a) Bright field microscopy image
Image by Medmyco at English Wikipedia [CC0]

(b) Fluorescence microscopy image
Image by ZEISS Microscopy from Germany [CC BY 2.0
(https:
//creativecommons.org/licenses/by/2.0)]

(c) Electron microscopy image
Image by Dartmouth College Electron Microscope Facility
[Public domain]
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Segmentation

Figure 3: Semantic segmentation and instance segmentation of kittens.
Image by “axelle b” [CC0]
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U-Net

Conv 3× 3 + ReLU
Conv 1× 1 + Softmax
Upsample

Copy
Max-pool

Figure 4: U-Net2 architecture.

2Ronneberger, Fischer, and Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation”.

12



StarDist

(a) Input (b) di,j (c) rki,j

Figure 5: Input and outputs of a StarDist3 model.

3Schmidt et al., “Cell Detection with Star-Convex Polygons”.
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StarDist

Advantages:

• No merging of touching objects
• No suppression of crowded object
• Relatively few parameters
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Res-U-Net
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Figure 6: Residual building blocks4 of the Res-U-Net.

4He et al., “Deep Residual Learning for Image Recognition”.
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Transfer Learning

Transfer learning means adapting knowledge from one task to another task
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Deep Transfer Learning
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Deep Transfer Learning
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Motivation

Drawbacks
• Require many labeled training images
• Require an expert to train and apply
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Evaluate Transfer Learning



Experiment: Different Noise Levels

• Imaging conditions change
• Same content but different images
• Transfer knowledge of previous model
to reduce training images and training
time

(a) HL60_LOW_NOISE

(b) HL60_HIGH_NOISE
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Experiment: Different Noise Levels
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Experiment: Different Noise Levels
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Experiment: Natural Images

• ResNet encoder pretrained on
ImageNet

• Used for many models
• Train on DSB2018
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Experiment: Pretraining on DSB2018

• Finding a good pretraining dataset:
DSB2018

• Fluorescence and bright-field
microscopy

• Different conditions
• Diverse and relatively big
→ Good for pretraining
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Experiment: Pretraining on DSB2018
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Experiment: Pretraining on DSB2018
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Experiment: Combining Simulated Datasets for Pretraining

• Use simulated data
• Can generate tons of images
• Different simulators to increase
diversity

• Data augmentation to increase diversity
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Experiment: Combining Simulated Datasets for Pretraining
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Experiment: Combining Simulated Datasets for Pretraining
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Motivation

Drawbacks
• Require many labeled training images
• Require an expert to train and apply
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KNIME Implementation for
Simplified Usage



KNIME Analytics Platform

Figure 10: KNIME Analytics Platform
Image from https://www.knime.com/knime-analytics-platform
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StarDist Workflow KNIME Workflow
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StarDist Workflow KNIME Workflow
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KNIME Components
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Retrain StarDist Application

• Dataset from the celltrackingchallenge5

• Phase contrast microscopy
• Only 4 segmented images
• Retrain StarDist model trained on
DSB2018

5http://celltrackingchallenge.net/2d-datasets/
41
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Retrain StarDist Application
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Retrain StarDist Application
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Retrain StarDist Application

Figure 11: Results of a model with random initialization vs a pretrained model.
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Conclusion



Conclusion

Transfer learning evaluation
• Can improve the model performance on
small datasets

• Training time can be reduced
• Choice of the pretraining dataset is
essential

Developed Framework
• Makes deep learning methods
accessible

• Train, apply and retrain models
• Extensible
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Datasets — Simulated Datasets

(a) HL60_LOW_NOISE (b) HL60_HIGH_NOISE

(c) GRANULOCYTE



Datasets — DSB2018



Datasets — CITYSCAPES



Experiment: StarDist with Res-U-Net Backbone
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Experiment: Pretraining on Natural Images
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Experiment: Pretraining on Natural Images
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Experiment: Pretraining on Simulated Data
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Experiment: Pretraining on Simulated Data
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KNIME Instance Segmentation Framework
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KNIME Instance Segmentation Framework — Large Image Workflow
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